{"id":248933,"date":"2024-10-19T16:24:16","date_gmt":"2024-10-19T16:24:16","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-vv-10-2019\/"},"modified":"2024-10-25T11:35:31","modified_gmt":"2024-10-25T11:35:31","slug":"asme-vv-10-2019","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-vv-10-2019\/","title":{"rendered":"ASME VV 10 2019"},"content":{"rendered":"
The purpose of this Standard is to provide the CSM community with a common language, a conceptual framework, and general guidance for implementing the processes of computational model V&V. To this end, this Standard includes a glossary of terms, figures illustrating the recommended overall approach to V&V activities, and discussions of factors that should be considered when developing and executing a V&V program.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | ASME V&V COMMITTEE ROSTER <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | CORRESPONDENCE WITH THE V&V COMMITTEE <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | PREFACE <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 1 EXECUTIVE SUMMARY <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | 2 INTRODUCTION 2.1 Purpose and Scope <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 2.2 General Concepts of V&V <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 2.3 General Concepts of Predictive Capability Figures Figure 2.3-1 Elements of V&V\/UQ Activities <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Figure 2.3-2 Relationship Between Validation Points, Validation Space, and Intended Use Domain <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 3 APPROACH 3.1 Modeling Complex Systems Figure 2.3-3 Depiction of the Increase in Uncertainty for Model Predictions Away From Validation Points <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 3.2 Hierarchical Approach to V&V Figure 3.1-1 Hierarchical Structure of Physical Systems <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 3.3 V&V Activities and Products <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Figure 3.3-1 V&V Process <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 3.4 Development of the V&V Plan <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 3.5 Documentation of V&V 3.6 Overview of Subsequent Sections 4 MODEL DEVELOPMENT 4.1 Conceptual Model <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Figure 4-1 Path From Conceptual Model to Computational Model <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 4.2 Mathematical Model 4.3 Computational Model 4.4 Model Revisions Table Table 4.1-1 Phenomena Identification and Ranking Table (PIRT) Example <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 4.5 Sensitivity Analysis <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 4.6 Uncertainty Quantification for Simulations 4.7 Documentation of Model Development Activities 5 VERIFICATION <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | 5.1 Code Verification <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 5.2 Calculation Verification <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 5.3 Verification Documentation 6 VALIDATION <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 6.1 Validation Experiments <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 6.2 Uncertainty Quantification in Experiments 6.3 Model Accuracy Assessment <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 6.4 Validation Documentation <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | 7 CONCLUDING REMARKS <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | MANDATORY APPENDIX I GLOSSARY <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | MANDATORY APPENDIX II REFERENCES <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" ASME V&V 10 – 2019: Standard for Verification and Validation in Computational Solid Mechanics<\/b><\/p>\n |