{"id":238593,"date":"2024-10-19T15:35:35","date_gmt":"2024-10-19T15:35:35","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bs-iec-622322011\/"},"modified":"2024-10-25T10:16:37","modified_gmt":"2024-10-25T10:16:37","slug":"bs-iec-622322011","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bs-iec-622322011\/","title":{"rendered":"BS IEC 62232:2011"},"content":{"rendered":"
This International Standard provides methods for the determination of radio-frequency (RF) field strength and specific absorption rate (SAR) in the vicinity of radiocommunication base stations (RBS) for the purpose of evaluating human exposure.<\/p>\n
This standard:<\/p>\n
considers RBS which transmit on one or more antennas using one or more frequencies in the range 300 MHz to 6 GHz;<\/p>\n<\/li>\n
describes several RF field strength and SAR measurement and computation methodologies with guidance on their applicability to address both the in situ evaluation of installed RBS and laboratory-based evaluations;<\/p>\n<\/li>\n
describes how surveyors with a sufficient level of expertise shall establish their specific evaluation procedures appropriate for their evaluation purpose;<\/p>\n<\/li>\n
considers the evaluation purposes, namely:<\/p>\n
product conformity: to establish that a RBS conforms to a defined set of limit conditions under its intended use;<\/p>\n<\/li>\n
compliance boundary: to establish the compliance boundary or boundaries for a RBS in relation to a defined set of limit conditions;<\/p>\n<\/li>\n
to evaluate RF field strength or SAR values at one or more evaluation locations, namely:<\/p>\n
evaluation location(s) at arbitrary locations outside the control boundary to provide information for interested parties;<\/p>\n<\/li>\n
evaluation location(s) at the control boundary to confirm validity of control boundary;<\/p>\n<\/li>\n
evaluation location(s) within the control boundary with the specific conditions relevant to investigate an alleged over-exposure incident;<\/p>\n<\/li>\n<\/ol>\n<\/li>\n<\/ol>\n<\/li>\n
provides guidance on how to report, interpret and compare results from different evaluation methodologies and, where the evaluation purpose requires it, determine a justified decision against a limit value;<\/p>\n<\/li>\n
provides informative guidance on how to evaluate ambient RF field strength levels in the vicinity of a RBS from RF sources other than the RBS under evaluation and at frequencies within and outside the range 300 MHz to 6 GHz;<\/p>\n<\/li>\n
provides short descriptions of the informative example case studies to aid the surveyor given in the companion Technical Report IEC 62669 [54].<\/p>\n<\/li>\n<\/ol>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | \nINTRODUCTION <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1 Scope <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 2 Normative references 3 Terms and definitions <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 4 Symbols and abbreviated terms 4.1 Physical quantities 4.2 Constants 4.3 Abbreviations <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 5 Developing the evaluation plan 5.1 Overview <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 5.2 Key tasks <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | Tables \n Table\u00a01 \u2013 Checklist for the evaluation plan <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 6 Evaluation methods 6.1 Overview Figures \n Figure\u00a01 \u2013 Overview of evaluation methods <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 6.2 Measurement methods Figure\u00a02 \u2013 Overview of RF field strength measurement methods <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Table\u00a02 \u2013 Sample template for estimating the expanded uncertainty of a RF field strength measurement that used a frequency-selective instrument <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Table\u00a03 \u2013 Sample template for estimating the expanded uncertainty of a RF field strength measurement that used a broadband instrument <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | Figure\u00a03 \u2013 Positioning of the EUT relative to the relevant phantom <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 6.3 Computation methods <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | Figure\u00a04 \u2013 Overview of computation methods <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Table\u00a04 \u2013 Applicability of computation methodsfor source-environment regions of Figure\u00a0B.1 <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | Figure\u00a05 \u2013 Reflection due to the presence of a ground plane <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | Figure\u00a06 \u2013 Enclosed cylinder around collinear arrays,with and without electrical downtilt <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | Figure\u00a07 \u2013 Directions for which SAR estimation expressions are given <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | Table\u00a05 \u2013 Applicability of SAR estimation formulae <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure\u00a08 \u2013 Ray tracing (synthetic model) geometry and parameters <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | Table\u00a06 \u2013 Sample template for estimating the expanded uncertaintyof a ray tracing RF field strength computation <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Table\u00a07 \u2013 Sample template for estimating the expanded uncertaintyof a full wave RF field strength computation <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | Table\u00a08 \u2013 Sample template for estimating the expanded uncertaintyof a full wave SAR computation <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 6.4 Extrapolation from the evaluated SAR\u00a0\/\u00a0RF field strength to the required assessment condition <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 6.5 Summation of multiple RF fields <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 7 Uncertainty 7.1 Background 7.2 Requirement to estimate uncertainty <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 7.3 How to estimate uncertainty 7.4 Uncertainty bounds on measurement equipment influence quantities 7.5 Applying uncertainty for compliance assessments <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 8 Reporting 8.1 Background 8.2 Evaluation report <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 8.3 Interpretation of results <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Annex A (normative) \nDeveloping the evaluation plan <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | Table A.1 \u2013 Measurand validity for evaluation points in each source region <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | Table\u00a0A.3 \u2013 Selecting in situ or laboratory measurementfrom evaluation purpose and RBS category <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | Table\u00a0A.5 \u2013 Guidance on selecting RF field strength measurement procedures <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | Table\u00a0A.7 \u2013 Guidance on specific evaluation method ranking <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | Annex B (normative) \nDefining the source-environment plane Figure\u00a0B.1 \u2013 Source-environment plane concept <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure\u00a0B.2 \u2013 Geometry of an antenna with largest linear dimension Leff and largest end dimension Lend <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | Table\u00a0B.1 \u2013 Definition of source regions Table\u00a0B.2 \u2013 Default source region boundaries <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | Table\u00a0B.3 \u2013 Source region boundaries for antennas with maximum dimension less than 2,5 \u03bb Table\u00a0B.4 \u2013 Source region boundaries for linear\/planar antenna arrayswith a maximum dimension greater than or equal to 2,5 \u03bb <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Table\u00a0B.5 \u2013 Source region boundaries for equiphase radiation aperture (e.g. dish) antennas with maximum reflector dimension much greater than a wavelength Table\u00a0B.6 \u2013 Source region boundaries for leaky feeders <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Figure\u00a0B.3 \u2013 Maximum path difference for an antenna with largest linear dimension L Table\u00a0B.7 \u2013 Far-field distance r measured in metres as a function of angle \u03b2 <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | Figure B.4 \u2013 Example source-environment plane regions near a roof-top antenna \nwhich has a narrow vertical (elevation plane) beamwidth (not to scale) <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Annex C (informative) Guidance on the application of the standard \nto specific evaluation purposes <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | Figure\u00a0C.1 \u2013 Example of complex compliance boundary Figure\u00a0C.2 \u2013 Example of circular cylindrical compliance boundaries: (a) sector coverage antenna, (b) horizontally omnidirectional antenna <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure\u00a0C.3 \u2013 Example of parallelepipedic compliance boundary Figure\u00a0C.4 \u2013 Example illustrating the linear scaling procedure <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | Figure\u00a0C.5 \u2013 Example investigation process <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | Annex D (normative) \nEvaluation parameters Figure\u00a0D.1 \u2013 Cylindrical, cartesian and spherical coordinatesrelative to the RBS antenna <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | Table\u00a0D.1 \u2013 Dimension variables Table\u00a0D.2 \u2013 RF power variables <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Table\u00a0D.3 \u2013 Antenna variables <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | Table\u00a0D.4 \u2013 Measurand variables <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Annex E (normative) \nRF field strength measurement equipment requirements Table\u00a0E.1 \u2013 Broadband measurement system requirements Table\u00a0E.2 \u2013 Frequency-selective measurement system requirements <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | Annex F (informative) \nBasic computation implementation Figure\u00a0F.1 \u2013 Reference frame employed for cylindrical formulae for field strength computation at a point P (left), and on a line perpendicular to boresight (right) <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure\u00a0F.2 \u2013 Two (a) and three (b) dimensional views illustrating the three valid zones for field strength computation around an antenna <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | Table\u00a0F.1 \u2013 Definition of boundaries for selecting the zone of computation <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Table\u00a0F.2 \u2013 Definition of <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Figure\u00a0F.3 \u2013 Leaky feeder geometry <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | Annex G (normative) \nAdvanced computation implementation <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | Annex H (normative) \nValidation of computation methods Figure\u00a0H.1 \u2013 Cylindrical formulae reference results Table\u00a0H.1 \u2013 Input parameters for cylinder and spherical formulae validation <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | Figure\u00a0H.2 \u2013 Spherical formulae reference results Table\u00a0H.2 \u2013 Input parameters for SAR estimation formulae validation Table\u00a0H.3 \u2013 SAR10g and SARwb estimation formulae reference results for Table H.2 parameters <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Figure\u00a0H.4 \u2013 Antenna parameters for ray tracing algorithm validation example <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Table\u00a0H.4 \u2013 Ray tracing power density reference results <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Figure\u00a0H.5 \u2013 Generic 900\u00a0MHz RBS antenna with nine dipole radiators Figure\u00a0H.6 \u2013 Line 1, 2 and 3 near-field positions for full wave and ray tracing validation <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Table\u00a0H.5 \u2013 Validation 1 full wave field reference results <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | Figure\u00a0H.7 \u2013 Generic 1\u00a0800\u00a0MHz RBS antenna with five slot radiators Table\u00a0H.6 \u2013 Validation 2 full wave field reference results <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | Figure\u00a0H.8 \u2013 RBS antenna placed in front of a multi-layered lossy cylinder Table\u00a0H.7 \u2013 Validation reference SAR results for computation method <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | Annex I (informative) \nGuidance on spatial averaging schemes <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | Figure\u00a0I.1 \u2013 Spatial averaging schemes relative to foot support level Figure\u00a0I.2 \u2013 Spatial averaging relative to spatial-peak field strength point height <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | Annex J (informative) \nGuidance on addressing time variation of signals in measurement <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | Annex K (informative) \nGuidance on determining ambient field levels <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | Figure\u00a0K.1 \u2013 Evaluation locations <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Annex L (informative) \nGuidance on comparing evaluated parameters with a limit value <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | Annex M (informative) \nGuidance on assessment schemes <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Table\u00a0M.1 \u2013 Examples of general assessment schemes <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | Figure\u00a0M.2 \u2013 Evaluation of compliance with limit Table\u00a0M.2 \u2013 Determining target uncertainty <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | Table\u00a0M.3 \u2013 Monte Carlo simulation of 10 000 trials both surveyorand auditor using best estimate Table\u00a0M.4 \u2013 Monte Carlo simulation of 10 000 trials both surveyorand auditor using target uncertainty of 4\u00a0dB <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | Table\u00a0M.5 \u2013 Monte Carlo simulation of 10 000 trials surveyor uses upper 95\u00a0%\u00a0CI vs. auditor uses lower 95\u00a0% CI <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Annex N (informative) \nGuidance on specific technologies <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Table\u00a0N.1 \u2013 Technology specific information <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Figure\u00a0N.1 \u2013 Spectral occupancy for GMSK <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Figure\u00a0N.2 \u2013 Spectral occupancy for CDMA <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | Table\u00a0N.2 \u2013 Example of spectrum analyser settings for an integration per service <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | Table\u00a0N.3 \u2013 Example constant power components for specific technologies <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | Figure\u00a0N.3 \u2013 Channel allocation for a WCDMA signal Table\u00a0N.4 \u2013 CDMA decoder requirements <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Table\u00a0N.5 \u2013 Signals configuration Table\u00a0N.6 \u2013 CDMA generator setting for power linearity <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | Table\u00a0N.7 \u2013 WCDMA generator setting for decoder calibration Table\u00a0N.8 \u2013 CDMA generator setting for reflection coefficient measurement <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | Figure\u00a0N.4 \u2013 Example of Wi-Fi frames Figure\u00a0N.5 \u2013 Channel occupation versus the integration time for 802.11b standard <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | Figure\u00a0N.6 \u2013 Channel occupation versus nominal throughput ratefor 802.11b\/g standards Figure\u00a0N.7 \u2013 Wi-Fi spectrum trace snapshot <\/td>\n<\/tr>\n | ||||||
145<\/td>\n | Figure\u00a0N.8 \u2013 Plan view representation of statistical conservative model <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | Figure\u00a0N.9 \u2013 Binomial cumulative probability function for N = 24, PR = 0,125 <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | Figure\u00a0N.10 \u2013 Binomial cumulative probability function for N = 18, PR = 2\/7 <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Annex O (informative) \nGuidance on uncertainty <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | Figure\u00a0O.2 \u2013 Plot of the calibration factors for E (not E2)provided from an example calibration report for an electric field probe <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | Table\u00a0O.1 \u2013 Guidance on minimum separation distances for some dipole lengths to ensure that the uncertainty does not exceed 5\u00a0% or 10\u00a0% in a measurement of E. <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Table\u00a0O.2 \u2013 Guidance on minimum separation distances for some loop diameters to ensure that the uncertainty does notexceed 5\u00a0% or 10\u00a0% in a measurement of H. Table\u00a0O.3 \u2013 Example minimum separation conditionsfor selected dipole lengths for 10\u00a0% uncertainty in E <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | Figure\u00a0O.3 \u2013 Computational model used for the variational analysis of reflected RF fields from the front of a surveyor <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | Table\u00a0O.4 \u2013 Standard estimates of\u00a0dB variation for the perturbations in front of a surveyor due to body reflected fields as described in Figure\u00a0O.3 Table\u00a0O.5 \u2013 Standard uncertainty (u) estimates for E and H due to body reflections from the surveyor for common radio services derived from estimates provided in Table\u00a0O.4 <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | Annex P (informative) \nCase studies <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Figure\u00a0P.1 \u2013 Micro\u00a0cell case study <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Figure\u00a0P.2 \u2013 Roof-top case study (a) with nearby apartment buildings (b) <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | Figure\u00a0P.3 \u2013 Roof-top\/tower case study (a) in residential area (b) <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | Figure\u00a0P.4 \u2013 Roof-top case study with direct access to antennas <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | Figure\u00a0P.5 \u2013 Roof-top case study with large antennas and no direct access <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Figure\u00a0P.6 \u2013 Cylindrical compliance boundary determinationfor dual band antenna on building <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | Figure\u00a0P.7 \u2013 Tower case study (a) in parkland (b) <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | Figure\u00a0P.8 \u2013 Multiple towers case study (a) at sports venue (b) <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | Figure\u00a0P.9 \u2013 Office building in building coverage case study <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" Determination of RF field strength and SAR in the vicinity of radiocommunication base stations for the purpose of evaluating human exposure<\/b><\/p>\n |