{"id":445495,"date":"2024-10-20T08:42:05","date_gmt":"2024-10-20T08:42:05","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/bsi-pd-iec-ts-63291-12023\/"},"modified":"2024-10-26T16:11:35","modified_gmt":"2024-10-26T16:11:35","slug":"bsi-pd-iec-ts-63291-12023","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/bsi\/bsi-pd-iec-ts-63291-12023\/","title":{"rendered":"BSI PD IEC\/TS 63291-1:2023"},"content":{"rendered":"
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
2<\/td>\n | undefined <\/td>\n<\/tr>\n | ||||||
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | FOREWORD <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 1 Scope 2 Normative references <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 3 Terms, definitions and abbreviated terms 3.1 Terms and definitions <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | Figures Figure 1 \u2013 Definition of the point of connection-AC and the point of connection-DC at an AC\/DC converter station <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | Figure 2 \u2013 Rigid bipolar HVDC system <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 3.2 Abbreviated terms 4 Coordination of HVDC grid and AC systems 4.1 About HVDC grids <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 4.2 HVDC grid structure <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 4.3 Purpose of the HVDC grid and power network diagram Figure 3 \u2013 Schematic structure of an HVDC grid <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | 4.4 AC\/DC power flow optimisation Figure 4 \u2013 Example of a PQ-diagram showing the active vs reactive power exchange capability of an AC\/DC converter station for a given AC voltage level <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 4.5 Converter operational functions 4.5.1 General 4.5.2 Basic operation functions \u2013 Converter normal operation state <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 4.5.3 Basic operation functions \u2013 Converter abnormal operation state <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 4.5.4 Ancillary services Figure 5 \u2013 Generic AC over- and under voltage ride through profile of an AC\/DC converter station <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figure 6 \u2013 Example of an active power frequency response capability of an AC\/DC converter station in frequency sensitive mode (FSM) with zero deadband and insensitivity with a positive active power setpoint; FSM in this figure shall be understood as FCR <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 5 HVDC grid characteristics 5.1 HVDC circuit topologies 5.1.1 Availability and reliability 5.1.2 Basic characteristics and nomenclature <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Tables Table 1 \u2013 Nomenclature of HVDC circuit topologies Table 2 \u2013 HVDC circuit topologies \u2013 HVDC grid characteristics <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | Table 3 \u2013 HVDC circuit topologies \u2013 HVDC station characteristics at a PoC <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure 7 \u2013 Example of an HVDC grid in 2DCe topology with different AC\/DC converter station topologies <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 5.1.3 Attributes of HVDC grids or HVDC grid subsystems <\/td>\n<\/tr>\n | ||||||
35<\/td>\n | 5.1.4 Attributes of an HVDC station <\/td>\n<\/tr>\n | ||||||
36<\/td>\n | 5.2 Connection modes 5.3 Grid operating states 5.3.1 General <\/td>\n<\/tr>\n | ||||||
37<\/td>\n | 5.3.2 Normal state 5.3.3 Alert state 5.3.4 Emergency state 5.3.5 Blackout state 5.3.6 Restoration 5.4 DC voltages 5.4.1 General 5.4.2 Nominal DC system voltage Figure 8 \u2013 Operating states <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 5.4.3 Steady-state DC pole voltage 5.4.4 Temporary DC pole voltage <\/td>\n<\/tr>\n | ||||||
39<\/td>\n | 5.4.5 DC neutral bus voltage Figure 9 \u2013 Generic temporary DC pole to earth voltage profiles in HVDC grids <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 5.5 Insulation coordination 5.6 Short-circuit characteristics 5.6.1 Calculation of short-circuit currents in HVDC grids Figure 10 \u2013 Generic neutral bus voltage profile <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 5.6.2 Short-circuit current design requirements 5.7 Steady-state voltage and current distortions 5.7.1 Emissions and impacts Figure 11 \u2013 Standard approximation function <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 5.7.2 Rights and obligations of a connectee Figure 12 \u2013 Equivalent circuit, defining the relationship between voltage and current distortions <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | 5.7.3 Similarities between HVDC grids and AC networks Figure 13 \u2013 Disturbance level <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | 5.7.4 Voltage and current distortion limits Figure 14 \u2013 Planning level and headroom <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 5.7.5 Allocation of limits to individual connectees 5.7.6 Frequency-dependent DC system impedance <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 5.8 DC system restoration 5.8.1 General 5.8.2 Post-DC fault recovery 5.8.3 Restoration from blackout <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 6 HVDC grid control 6.1 Closed-loop control functions 6.1.1 General 6.1.2 Core control functions 6.1.3 Coordinating control functions <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 6.2 Controller hierarchy 6.2.1 General Figure 15 \u2013 General controller hierarchy with typical time ranges of operation <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | 6.2.2 Internal converter control 6.2.3 DC node voltage control <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | 6.2.4 Coordinated HVDC grid control Figure 16 \u2013 Typical DC node voltage control modes (illustration in DC voltage\/power plane) <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 6.2.5 AC\/DC grid control <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | 6.3 Propagation of information <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | Figure 17 \u2013 Generation of final converter schedules including converter control modes and its parameters <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | 6.4 Open-loop controls 6.4.1 Coordination of connection modes between HVDC stations and their PoC-DC Figure 18 \u2013 Propagation of switching commands to individual HVDC stations <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 6.4.2 Operating sequences for HVDC grid installations 6.4.3 Post-DC fault recovery Figure 19 \u2013 Typical operating sequences for transitions between operating states of HVDC grid, HVDC grid subsystem or HVDC grid installation <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | 7 HVDC grid protection 7.1 General <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | 7.2 DC fault separation 7.3 Protection system related installations and equipment 7.3.1 AC\/DC converter station <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | 7.3.2 HVDC grid topology and equipment 7.4 HVDC grid protection zones 7.4.1 General <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | Figure 20 \u2013 Example illustrating the concept of HVDC grid protection zones in HVDC grids Table 4 \u2013 DC fault separation concepts of HVDC grids or parts thereof defined at a PoC-AC or PoC-DC respectively <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 7.4.2 Permanent stop P <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | Figure 21 \u2013 Example of voltage and current traces in the event of “permanent stop” <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 7.4.3 Permanent stop PQ <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | 7.4.4 Temporary stop P <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | Figure 22 \u2013 Example voltage and current traces in the event of “temporary stop P” <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 7.4.5 Temporary stop PQ <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 7.4.6 Continued operation <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Figure 23 \u2013 Example voltage and current traces in the event of “continued operation” <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 7.4.7 Example of a protection zone matrix Table 5 \u2013 HVDC grid protection zone matrix <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 7.5 DC protection 7.5.1 General Figure 24 \u2013 Example of an HVDC grid protection zone layout <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | 7.5.2 DC converter protections 7.5.3 HVDC grid protections <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | 7.5.4 HVDC grid protection communication 8 AC\/DC converter stations 8.1 Purpose 8.2 AC\/DC converter station types 8.2.1 General 8.2.2 AC\/DC converter station type 1 (AC\/DC type 1) 8.2.3 AC\/DC converter station type 2 (AC\/DC type 2) <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | 8.2.4 AC\/DC converter station type 3 (AC\/DC type 3) 8.2.5 AC\/DC converter station type 4 (AC\/DC type 4) 8.2.6 AC\/DC converter station type 5 (AC\/DC type 5) 8.3 Overall requirements 8.3.1 Robustness of AC\/DC converter stations Figure 25 \u2013 AC\/DC converter station types in the U\/I diagram <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 8.3.2 Availability and reliability 8.3.3 Active power reversal 8.4 Main circuit design 8.4.1 General characteristics <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 8.4.2 DC side <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Figure 26 \u2013 Example of a BRO AC\/DC converter station with connected BRZ DC switching station. The AC\/DC converter station is of bipolar topology. Its adjacent DC switching station connects two bipolar transmission circuits with DMR in this example <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Table 6 \u2013 DC Connection modes of an AC\/DC converter station <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Table 7 \u2013 DC circuit re-configuration requirements <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 8.4.3 AC side <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | 8.5 HVDC grid control and protection interface 8.6 Controls 8.6.1 General 8.6.2 Automated vs manual operation <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 8.6.3 Control modes and support of coordination 8.6.4 Limitation strategies 8.6.5 Operating sequences for AC\/DC converter stations Figure 27 \u2013 Operating states and transitions for AC\/DC converter stations <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 8.6.6 Dynamic behaviour <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 8.7 Protection 8.7.1 General 8.7.2 Configuration requirements <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | 8.7.3 Function requirements <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | 8.7.4 Fault separation strategy for faults inside the AC\/DC converter station <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | 8.7.5 Coordination of the DC protection with the HVDC grid 8.7.6 Example for coordination of the DC protection with the HVDC grid <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | Table 8 \u2013 Example protection coordination of AC\/DC converter station 1 and HVDC grid (for main and backup concept including the separation concept and the FSD) <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 9 HVDC grid installations 9.1 General Figure 28 \u2013 Example illustrating the coordination of the DC protection of AC\/DC converter station 1 with the HVDC grid <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Table 9 \u2013 Functions changing operating states <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | Table 10 \u2013 Functions of grid operation Table 11 \u2013 Protective functions <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | 9.2 DC switching station 9.2.1 Purpose 9.2.2 Overall requirements 9.2.3 Main circuit design <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Figure 29 \u2013 Example of a BRZ DC switching station. The DC switching station connects two bipolar transmission circuits with DMR and an AC\/DC converter station of bipolar topology <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | Table 12 \u2013 Connection modes of the bipolar DC SU of Figure 29 connecting a PoC-DC of an HVDC transmission line <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | Table 13 \u2013 Connection modes of the bipolar DC SU of Figure 29 connecting a PoC-DC of an AC\/DC converter station (x = 1) Table 14 \u2013 Normally used DC circuit reconfiguration time requirements for the DC SU example of Figure 29 (PoC-DC) <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 9.2.4 HVDC grid control and protection interface <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 9.2.5 Controls <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 9.2.6 Protection <\/td>\n<\/tr>\n | ||||||
117<\/td>\n | 9.3 HVDC transmission lines 9.3.1 Purpose 9.3.2 Overall requirements <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | 9.3.3 Main circuit design <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | 9.3.4 HVDC grid control and protection interface 9.3.5 Controls 9.3.6 Protection <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | 9.4 DC\/DC converter stations <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | 10 Studies and associated models 10.1 General 10.2 Description of studies 10.2.1 General 10.2.2 HVDC grid planning studies <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 10.2.3 HVDC grid design studies 10.2.4 HVDC grid extension studies 10.2.5 Studies for HVDC grid installation refurbishments and other modifications <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | 10.3 Models and interfaces 10.3.1 General 10.3.2 Model interfaces and integration compatibility 10.3.3 Model capability <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | 10.3.4 Model format 10.3.5 Model maintenance and portability 10.3.6 Model aggregation 10.3.7 Model testing and validation <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 11 Testing 11.1 General 11.2 Off-site testing 11.2.1 General <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 11.2.2 Factory system tests <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Figure 30 \u2013 Example test environment based on complete C&P equipment represented as hardware <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Figure 31 \u2013 Example test environment partly based on C&P equipment as hardware and the remaining C&P equipment as functional software-in-the-loop model with two alternatives for representing the HVDC grid controller <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Figure 32 \u2013 Example test environment based on complete C&P equipment represented as functional software-in-the-loop model <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Figure 33 \u2013 Example test environment dedicated to test the HVDC grid controller, based on complete C&P equipment represented as functional software-in-the-loop model and HVDC grid controller as hardware <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | 11.3 On-site testing <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | Bibliography <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" High voltage direct current (HVDC) grid systems and connected converter stations. Guideline and parameter lists for functional specifications – Guideline<\/b><\/p>\n |