{"id":160979,"date":"2024-10-19T09:40:11","date_gmt":"2024-10-19T09:40:11","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/aci-445r-99-1999\/"},"modified":"2024-10-25T01:58:48","modified_gmt":"2024-10-25T01:58:48","slug":"aci-445r-99-1999","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/aci\/aci-445r-99-1999\/","title":{"rendered":"ACI 445R 99 1999"},"content":{"rendered":"

Truss model approaches and related theories for the design of reinforced concrete members to resist shear are presented. Realistic models for the design of deep beams, corbels, and other nonstandard structural members are illustrated. The background theories and the complementary nature of a number of different approaches for the shear design of structural concrete are discussed. These relatively new procedures provide a unified, intelligible, and safe design framework for proportioning structural concrete under combined load effects. Keywords: beams (supports); concrete; design; detailing; failure; models; shear strength; structural concrete; strut and tie.<\/p>\n

PDF Catalog<\/h4>\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n
PDF Pages<\/th>\nPDF Title<\/th>\n<\/tr>\n
1<\/td>\nCONTENTS
CONTENTS <\/td>\n<\/tr>\n
2<\/td>\nCHAPTER 1\u2014 INTRODUCTION
CHAPTER 1\u2014 INTRODUCTION
1.1\u2014 Scope and objectives
1.1\u2014 Scope and objectives
1.2\u2014Historical development of shear design provisions
1.2\u2014Historical development of shear design provisions <\/td>\n<\/tr>\n
4<\/td>\n1.3\u2014Overview of current ACI design procedures
1.3\u2014Overview of current ACI design procedures <\/td>\n<\/tr>\n
5<\/td>\n1.4\u2014Summary
1.4\u2014Summary
CHAPTER 2\u2014 COMPRESSION FIELD APPROACHES
CHAPTER 2\u2014 COMPRESSION FIELD APPROACHES
2.1\u2014 Introduction
2.1\u2014 Introduction <\/td>\n<\/tr>\n
6<\/td>\n2.2\u2014Compression field theory
2.2\u2014Compression field theory <\/td>\n<\/tr>\n
7<\/td>\n2.3\u2014Stress-strain relationships for diagonally cracked concrete
2.3\u2014Stress-strain relationships for diagonally cracked concrete <\/td>\n<\/tr>\n
9<\/td>\n2.4\u2014Modified compression field theory
2.4\u2014Modified compression field theory <\/td>\n<\/tr>\n
11<\/td>\n2.5\u2014Rotating-angle softened-truss model
2.5\u2014Rotating-angle softened-truss model <\/td>\n<\/tr>\n
12<\/td>\n2.6\u2014 Design procedure based on modified compression field theory
2.6\u2014 Design procedure based on modified compression field theory <\/td>\n<\/tr>\n
13<\/td>\n2.6.1 Minimum shear reinforcement
2.6.1 Minimum shear reinforcement <\/td>\n<\/tr>\n
14<\/td>\n2.6.2 Example: Determine stirrup spacing in reinforced concrete beam
2.6.2 Example: Determine stirrup spacing in reinforced concrete beam
2.6.3 Example: Determine stirrup spacing in a prestressed concrete beam
2.6.3 Example: Determine stirrup spacing in a prestressed concrete beam <\/td>\n<\/tr>\n
15<\/td>\n2.6.4 Design of member without stirrups
2.6.4 Design of member without stirrups <\/td>\n<\/tr>\n
16<\/td>\n2.6.5 Additional design considerations
2.6.5 Additional design considerations <\/td>\n<\/tr>\n
17<\/td>\nCHAPTER 3\u2014 TRUSS APPROACHES WITH CONCRETE CONTRIBUTION
CHAPTER 3\u2014 TRUSS APPROACHES WITH CONCRETE CONTRIBUTION
3.1\u2014 Introduction
3.1\u2014 Introduction
3.2\u2014Overview of recent European codes
3.2\u2014Overview of recent European codes <\/td>\n<\/tr>\n
19<\/td>\n3.3\u2014Modified sectional-truss model approach
3.3\u2014Modified sectional-truss model approach <\/td>\n<\/tr>\n
20<\/td>\n3.4\u2014Truss models with crack friction
3.4\u2014Truss models with crack friction
3.4.1 Equilibrium of truss models with crack friction
3.4.1 Equilibrium of truss models with crack friction
3.4.2 Inclination and spacing of inclined cracks
3.4.2 Inclination and spacing of inclined cracks <\/td>\n<\/tr>\n
21<\/td>\n3.4.3 Constitutive laws for crack friction
3.4.3 Constitutive laws for crack friction
3.4.4 Determining shear resistance Vf =Vc due to crack friction
3.4.4 Determining shear resistance Vf =Vc due to crack friction
3.4.5 Stresses and strength of concrete between cracks
3.4.5 Stresses and strength of concrete between cracks <\/td>\n<\/tr>\n
23<\/td>\n3.5\u2014Fixed-angle softened-truss models
3.5\u2014Fixed-angle softened-truss models <\/td>\n<\/tr>\n
24<\/td>\n3.6\u2014Summary
3.6\u2014Summary <\/td>\n<\/tr>\n
25<\/td>\nCHAPTER 4\u2014 MEMBERS WITHOUT TRANSVERSE REINFORCEMENT
CHAPTER 4\u2014 MEMBERS WITHOUT TRANSVERSE REINFORCEMENT
4.1\u2014 Introduction
4.1\u2014 Introduction
4.2\u2014Empirical methods
4.2\u2014Empirical methods <\/td>\n<\/tr>\n
26<\/td>\n4.3\u2014Mechanisms of shear transfer
4.3\u2014Mechanisms of shear transfer
4.3.1 Overview
4.3.1 Overview
4.3.2 Uncracked concrete and flexural compression zone
4.3.2 Uncracked concrete and flexural compression zone <\/td>\n<\/tr>\n
27<\/td>\n4.3.3 Interface shear transfer
4.3.3 Interface shear transfer <\/td>\n<\/tr>\n
28<\/td>\n4.3.4 Dowel action of longitudinal reinforcement
4.3.4 Dowel action of longitudinal reinforcement
4.3.5 Residual tensile stresses across cracks
4.3.5 Residual tensile stresses across cracks
4.4\u2014Models for members without transverse reinforcement
4.4\u2014Models for members without transverse reinforcement
4.4.1 Introduction
4.4.1 Introduction <\/td>\n<\/tr>\n
29<\/td>\n4.4.2 Fracture mechanics approaches
4.4.2 Fracture mechanics approaches
4.4.3 Simple strut-and-tie models
4.4.3 Simple strut-and-tie models
4.4.4 Tooth model for slender members
4.4.4 Tooth model for slender members <\/td>\n<\/tr>\n
30<\/td>\n4.4.5 Truss models with concrete ties
4.4.5 Truss models with concrete ties <\/td>\n<\/tr>\n
31<\/td>\n4.4.6 Modified compression field theory
4.4.6 Modified compression field theory <\/td>\n<\/tr>\n
32<\/td>\n4.4.7 Toward a consistent method
4.4.7 Toward a consistent method
4.5\u2014Important parameters influencing shear capacity
4.5\u2014Important parameters influencing shear capacity
4.5.1 Depth of member or size effect
4.5.1 Depth of member or size effect
4.5.2 Shear span-to-depth ratio (a\/d) and support conditions
4.5.2 Shear span-to-depth ratio (a\/d) and support conditions <\/td>\n<\/tr>\n
33<\/td>\n4.5.3 Longitudinal reinforcement
4.5.3 Longitudinal reinforcement <\/td>\n<\/tr>\n
34<\/td>\n4.5.4 Axial force
4.5.4 Axial force
4.6\u2014Conclusions
4.6\u2014Conclusions <\/td>\n<\/tr>\n
35<\/td>\nCHAPTER 5\u2014 SHEAR FRICTION
CHAPTER 5\u2014 SHEAR FRICTION
5.1\u2014 Introduction
5.1\u2014 Introduction
5.2\u2014Shear-friction hypothesis
5.2\u2014Shear-friction hypothesis
5.3\u2014Empirical developments
5.3\u2014Empirical developments <\/td>\n<\/tr>\n
36<\/td>\n5.4\u2014Analytical developments
5.4\u2014Analytical developments
5.5\u2014Code developments
5.5\u2014Code developments <\/td>\n<\/tr>\n
37<\/td>\nCHAPTER 6\u2014 DESIGN WITH STRUT- AND- TIE MODELS
CHAPTER 6\u2014 DESIGN WITH STRUT- AND- TIE MODELS
6.1\u2014 Introduction
6.1\u2014 Introduction <\/td>\n<\/tr>\n
38<\/td>\n6.2\u2014Design of B regions
6.2\u2014Design of B regions <\/td>\n<\/tr>\n
39<\/td>\n6.3\u2014Design of D regions
6.3\u2014Design of D regions
6.3.1 Definition of D region
6.3.1 Definition of D region
6.3.2 Choosing strut-and-tie model
6.3.2 Choosing strut-and-tie model <\/td>\n<\/tr>\n
41<\/td>\n6.3.3 Checking compressive stresses in struts
6.3.3 Checking compressive stresses in struts
6.3.4 Design of nodal zones
6.3.4 Design of nodal zones <\/td>\n<\/tr>\n
44<\/td>\n6.3.5 Design of tension ties
6.3.5 Design of tension ties
6.3.6 Anchorage of tension ties
6.3.6 Anchorage of tension ties
6.3.7 Design procedure
6.3.7 Design procedure <\/td>\n<\/tr>\n
45<\/td>\n6.3.8 Examples of strut-and tie models
6.3.8 Examples of strut-and tie models <\/td>\n<\/tr>\n
46<\/td>\nCHAPTER 7\u2014 SUMMARY
CHAPTER 7\u2014 SUMMARY
7.1\u2014 Introduction
7.1\u2014 Introduction
7.2\u2014Truss models
7.2\u2014Truss models <\/td>\n<\/tr>\n
48<\/td>\n7.3\u2014Members without transverse reinforcement
7.3\u2014Members without transverse reinforcement
7.4\u2014Additional work
7.4\u2014Additional work <\/td>\n<\/tr>\n
49<\/td>\nAPPENDIX A\u2014 ACI 318M-95 SHEAR DESIGN APPROACH FOR BEAMS
APPENDIX A\u2014 ACI 318M-95 SHEAR DESIGN APPROACH FOR BEAMS
A-1\u2014Notation
A-1\u2014Notation <\/td>\n<\/tr>\n
50<\/td>\nA-2\u2014Acknowledgments
A-2\u2014Acknowledgments
APPENDIX B\u2014 REFERENCES
APPENDIX B\u2014 REFERENCES
B-1\u2014 Referenced standards and reports
B-1\u2014 Referenced standards and reports
B-2\u2014Cited references
B-2\u2014Cited references <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":"

445R-99: Recent Approaches to Shear Design of Structural Concrete (Reapproved 2009)<\/b><\/p>\n\n\n\n\n
Published By<\/td>\nPublication Date<\/td>\nNumber of Pages<\/td>\n<\/tr>\n
ACI<\/b><\/a><\/td>\n1999<\/td>\n55<\/td>\n<\/tr>\n<\/tbody>\n<\/table>\n","protected":false},"featured_media":160982,"template":"","meta":{"rank_math_lock_modified_date":false,"ep_exclude_from_search":false},"product_cat":[2650],"product_tag":[],"class_list":{"0":"post-160979","1":"product","2":"type-product","3":"status-publish","4":"has-post-thumbnail","6":"product_cat-aci","8":"first","9":"instock","10":"sold-individually","11":"shipping-taxable","12":"purchasable","13":"product-type-simple"},"_links":{"self":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product\/160979","targetHints":{"allow":["GET"]}}],"collection":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product"}],"about":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/types\/product"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media\/160982"}],"wp:attachment":[{"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/media?parent=160979"}],"wp:term":[{"taxonomy":"product_cat","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_cat?post=160979"},{"taxonomy":"product_tag","embeddable":true,"href":"https:\/\/pdfstandards.shop\/wp-json\/wp\/v2\/product_tag?post=160979"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}