{"id":443651,"date":"2024-10-20T08:33:59","date_gmt":"2024-10-20T08:33:59","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-ptc-19-5-2022\/"},"modified":"2024-10-26T16:00:24","modified_gmt":"2024-10-26T16:00:24","slug":"asme-ptc-19-5-2022","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-ptc-19-5-2022\/","title":{"rendered":"ASME PTC 19.5 2022"},"content":{"rendered":"
This Supplement describes the techniques and methods of flow measurements required or recommended by ASME PTCs. A variety of commonly used flow measurement devices are included to provide details for the different applications referenced by various PTCs. This is a supplementary document that does not supersede the mandatory requirements of any PTC, unless such an agreement has been expressed in writing prior to testing or a PTC requires that specified sections or paragraphs within this Supplement be used.<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | NOTICE <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | ASME PTC COMMITTEE ROSTER <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | CORRESPONDENCE WITH THE PTC COMMITTEE <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | Section 1 Object, Scope, and Uncertainty 1-1 OBJECT 1-2 SCOPE 1-3 UNCERTAINTY 1-4 REFERENCES TO ASME STANDARDS <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | Section 2 Definitions, Values, and Descriptions of Terms 2-1 GENERAL 2-2 PRIMARY DEFINITIONS AND SYSTEMS OF UNITS 2-3 SYMBOLS AND DIMENSIONS 2-3.1 Common Conversion Factors 2-4 THERMAL EXPANSION 2-4.1 Linear Thermal Expansion <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Tables Table 2-3-1 Symbols Typically Used in Flow Measurement <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 2-4.2 Tables of Linear Thermal Expansion for Selected Materials 2-5 REFERENCES <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | Section 3 Differential Pressure Class Meters 3-1 NOMENCLATURE 3-2 GENERAL EQUATION FOR MASS FLOW THROUGH A DIFFERENTIAL PRESSURE CLASS METER 3-3 BASIC PHYSICAL CONCEPTS USED IN THE DERIVATION OF THE GENERAL EQUATION FOR MASS FLOW <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | Table 3-1-1 Symbols Specifically Applied in Sections 3 through 6 (in Addition to Symbols in Table 2-3-1) <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 3-4 THEORETICAL FLOW \u2014 LIQUID AS THE FLOWING FLUID Table 3-2-1 Values of Constants in the General Equation for Various Units <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figures Figure 3-4-1 Water Leg Correction for Flow Measurement <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | 3-5 THEORETICAL FLOW \u2014 GAS OR VAPOR AS THE FLOWING FLUID Table 3-4-1 Units and Conversion Factor for Water Leg Correction for Flow Measurement <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | 3-6 FACTORS NOT ACCOUNTED FOR IN THEORETICAL MASS FLOW BY IDEALIZED FLOW ASSUMPTIONS 3-7 DISCHARGE COEFFICIENT, C, IN THE INCOMPRESSIBLE FLUID EQUATION <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 3-8 DISCHARGE COEFFICIENT, C, AND THE EXPANSION FACTOR, \u03b5, FOR GASES 3-9 CALCULATION OF EXPANSION FACTOR, \u03b5 3-10 DETERMINING DISCHARGE COEFFICIENT FOR DIFFERENTIAL PRESSURE CLASS METERS <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 3-11 THERMAL EXPANSION\/CONTRACTION OF INLET SECTION AND PRIMARY ELEMENT 3-12 SELECTION AND RECOMMENDED USE OF DIFFERENTIAL PRESSURE CLASS METERS 3-12.1 Beta, Pipe Size, and Reynolds Number 3-12.2 Uncertainty <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | Table 3-12.2-1 Uncertainty of Discharge Coefficient, C, (Uncalibrated) and Expansion Factor, \u03b5 <\/td>\n<\/tr>\n | ||||||
32<\/td>\n | 3-12.3 Unrecoverable Pressure Loss 3-12.4 Specified Installations 3-13 RESTRICTIONS OF USE 3-14 PROCEDURE FOR SIZING A DIFFERENTIAL PRESSURE CLASS METER <\/td>\n<\/tr>\n | ||||||
33<\/td>\n | Figure 3-12.3-1 Unrecoverable Pressure Loss Versus Beta Ratio <\/td>\n<\/tr>\n | ||||||
34<\/td>\n | 3-15 FLOW CALCULATION PROCEDURE 3-16 SAMPLE CALCULATION Table 3-16-1 Natural Gas Analysis <\/td>\n<\/tr>\n | ||||||
38<\/td>\n | 3-17 REFERENCES <\/td>\n<\/tr>\n | ||||||
40<\/td>\n | Section 4 Orifice Meters 4-1 NOMENCLATURE 4-2 INTRODUCTION 4-3 TYPES OF THIN-PLATE, SQUARE-EDGED ORIFICES 4-4 CODE COMPLIANCE REQUIREMENTS 4-5 MULTIPLE SETS OF DIFFERENTIAL PRESSURE TAPS <\/td>\n<\/tr>\n | ||||||
41<\/td>\n | 4-6 MACHINING TOLERANCES, DIMENSIONS, AND MARKINGS FOR ORIFICE PLATE 4-6.1 Deflection and the Required Thickness, E, of Orifice Plate Figure 4-6-1 Standard Orifice Plate <\/td>\n<\/tr>\n | ||||||
42<\/td>\n | 4-6.2 Upstream Face, A Figure 4-6.1-1 Deflection of an Orifice Plate by Differential Pressure Table 4-6.1-1 Recommended Plate Thickness, E, for Stainless Steel Orifice Plate <\/td>\n<\/tr>\n | ||||||
43<\/td>\n | 4-6.3 Downstream Face, B 4-6.4 Thickness, e, of the Orifice 4-6.5 Plate Thickness, E, and Bevel 4-6.6 Edges G, H, and I 4-6.7 Orifice Diameter, d 4-6.8 Eccentricity and Alignment of Orifice in Metering Section 4-6.9 Orifice Drain Hole <\/td>\n<\/tr>\n | ||||||
44<\/td>\n | 4-7 MACHINING TOLERANCES AND DIMENSIONS FOR DIFFERENTIAL PRESSURE TAPS 4-7.1 Flange Taps \u2014 Shape, Diameter, and Angular Position 4-7.2 Flange Taps Orifice Metering Runs \u2014 Spacing of Taps 4-7.3 Corner Tap Orifice Metering Runs <\/td>\n<\/tr>\n | ||||||
45<\/td>\n | Figure 4-7-1 Location of Pressure Taps for Orifices With Flange Taps <\/td>\n<\/tr>\n | ||||||
46<\/td>\n | Figure 4-7-2 Location of Pressure Taps for Orifices With Corner Taps <\/td>\n<\/tr>\n | ||||||
47<\/td>\n | 4-8 LOCATION OF TEMPERATURE AND STATIC PRESSURE MEASUREMENTS 4-9 EMPIRICAL FORMULATIONS FOR DISCHARGE COEFFICIENT, C <\/td>\n<\/tr>\n | ||||||
48<\/td>\n | 4-10 LIMITATIONS AND UNCERTAINTY OF EQ. (4-9-1) FOR DISCHARGE COEFFICIENT, C 4-10.1 Limits of Use 4-10.2 Uncertainties of the Discharge Coefficient of Uncalibrated Orifice Sections <\/td>\n<\/tr>\n | ||||||
49<\/td>\n | 4-11 UNCERTAINTY OF EXPANSION FACTOR, \u03b5 Figure 4-10.1-1 Minimum Reynolds Number for Flange Taps <\/td>\n<\/tr>\n | ||||||
50<\/td>\n | 4-12 UNRECOVERABLE PRESSURE LOSS 4-13 CALCULATIONS OF DIFFERENTIAL PRESSURE CLASS FLOW MEASUREMENT SYSTEMATIC UNCERTAINTY 4-13.1 Derivation 4-13.2 Uncertainty Calculation \u2014 General <\/td>\n<\/tr>\n | ||||||
51<\/td>\n | Table 4-13.1-1 Sensitivity Coefficients in the General Equation for Differential Pressure Meters <\/td>\n<\/tr>\n | ||||||
52<\/td>\n | Table 4-13.2.1-1 Example 1 \u2014 Systematic Uncertainty Analysis for Given Steam Flow Orifice Metering Run Table 4-13.2.2-1 Example 2 \u2014 Systematic Uncertainty Analysis for Given Steam Flow Orifice Metering Run <\/td>\n<\/tr>\n | ||||||
53<\/td>\n | 4-13.3 Random Uncertainty Due to Data Fluctuations 4-13.4 Instrumentation Uncertainties for the Determination of Flow Measurement Systematic Uncertainties Table 4-13.2.3-1 Example 3 \u2014 Systematic Uncertainty Analysis for Given Gas Flow and Meter Tube <\/td>\n<\/tr>\n | ||||||
54<\/td>\n | 4-13.5 Uncertainty of Typical Gas Fuel Flow Measurement for a Laboratory-Calibrated Orifice Metering Section 4-14 PROCEDURE FOR FITTING A CALIBRATION CURVE AND EXTRAPOLATION TECHNIQUE <\/td>\n<\/tr>\n | ||||||
55<\/td>\n | Table 4-13.4.1-1 Systematic Uncertainty, 0.075% Accuracy Class Differential Pressure Transmitter Table 4-13.4.2-1 Systematic Uncertainty, 0.075% Accuracy Class Static Pressure Transmitter Table 4-13.5-1 Systematic Uncertainty Analysis for Given Gas flowmetering Run With Laboratory Calibration <\/td>\n<\/tr>\n | ||||||
56<\/td>\n | 4-15 REFERENCES <\/td>\n<\/tr>\n | ||||||
57<\/td>\n | Section 5 Nozzles and Venturis 5-1 NOMENCLATURE 5-2 INTRODUCTION 5-3 REQUIRED PROPORTIONS OF ASME NOZZLES 5-3.1 Entrance Section 5-3.2 Throat Section <\/td>\n<\/tr>\n | ||||||
58<\/td>\n | 5-3.3 Exit End Section 5-3.4 General Requirements for ASME Flow Nozzles Figure 5-3-1 High \u03b2 Nozzle <\/td>\n<\/tr>\n | ||||||
59<\/td>\n | Figure 5-3-2 Low \u03b2 Nozzle Figure 5-3-3 Throat Tap Nozzle for \u03b2 > 0.44 <\/td>\n<\/tr>\n | ||||||
60<\/td>\n | Figure 5-3-4 Throat Tap Nozzle for \u03b2 \u2264 0.44 Figure 5-3-5 Throat Tap Nozzle End Detail <\/td>\n<\/tr>\n | ||||||
61<\/td>\n | Figure 5-3-6 Example Throat Tap Nozzle Flow Section <\/td>\n<\/tr>\n | ||||||
62<\/td>\n | Figure 5-3.4-1 ASME Nozzle Required Surface Finish to Produce a Hydraulically Smooth Surface <\/td>\n<\/tr>\n | ||||||
63<\/td>\n | 5-4 NOZZLE PRESSURE TAP REQUIREMENTS 5-4.1 Wall Tap Nozzles Figure 5-3.4-2 Boring in Flow Section Upstream of Nozzle <\/td>\n<\/tr>\n | ||||||
64<\/td>\n | 5-4.2 Throat Tap Nozzles 5-5 NOZZLE INSTALLATION REQUIREMENTS 5-5.1 Flanged Installation 5-5.2 Installation Without Flanges 5-5.3 Centering 5-5.4 Straight Lengths 5-5.5 Flow Conditioners 5-5.6 Diffusers 5-5.7 Assembly <\/td>\n<\/tr>\n | ||||||
65<\/td>\n | 5-6 DISCHARGE COEFFICIENT FOR ASME NOZZLES 5-6.1 High \u03b2 and Low \u03b2 Nozzles Figure 5-5.6-1 Nozzle With Diffusing Cone <\/td>\n<\/tr>\n | ||||||
66<\/td>\n | 5-6.2 Throat Tap Nozzles 5-7 THE ASME VENTURI TUBE Figure 5-6.2.1-1 Reference Curve for Throat Tap Nozzles <\/td>\n<\/tr>\n | ||||||
67<\/td>\n | Figure 5-7-1 Profile of the ASME Venturi <\/td>\n<\/tr>\n | ||||||
68<\/td>\n | 5-8 VENTURI DESIGN AND DESIGN VARIATIONS 5-8.1 Entrance Section 5-8.2 Convergent Section 5-8.3 Throat 5-8.4 Divergent Section <\/td>\n<\/tr>\n | ||||||
69<\/td>\n | 5-8.5 Roughness 5-8.6 Materials 5-8.7 Manufacture 5-8.8 Characteristics of a Machined Convergent Section 5-8.9 Characteristics of a Fabricated Convergent Section 5-9 VENTURI PRESSURE TAPS 5-9.1 Number of Taps 5-9.2 Tap Location 5-9.3 Tap Hole Edge 5-9.4 Tap Length <\/td>\n<\/tr>\n | ||||||
70<\/td>\n | 5-9.5 Tap Size 5-9.6 Pressure Taps With Annular Chambers. 5-10 DISCHARGE COEFFICIENT OF THE ASME VENTURI 5-10.1 Equation for the Discharge Coefficient 5-10.2 Uncertainty of Discharge Coefficient for Uncalibrated Flow Sections 5-11 INSTALLATION REQUIREMENTS FOR THE ASME VENTURI 5-11.1 Installation Requirements 5-12 LABORATORY CALIBRATIONS 5-13 UNCERTAINTY OF EXPANSION FACTOR, \u03b5 <\/td>\n<\/tr>\n | ||||||
71<\/td>\n | 5-14 UNRECOVERABLE PRESSURE LOSS 5-14.1 ASME Nozzles Without a Diffusing Section 5-14.2 ASME Nozzles With a Diffusing Section 5-14.3 ASME Venturis 5-15 REFERENCES <\/td>\n<\/tr>\n | ||||||
72<\/td>\n | Section 6 Differential Pressure Class Meter Installation and Flow Conditioning Requirements 6-1 NOMENCLATURE 6-2 INTRODUCTION 6-2.1 Recommended Practice 6-3 METERING SECTION REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
73<\/td>\n | 6-3.1 Fabrication of the Metering Section Pipe 6-4 METER INSTALLATION IN THE METERING SECTION 6-4.1 Alignment 6-4.2 Centering <\/td>\n<\/tr>\n | ||||||
74<\/td>\n | 6-5 ADDITIONAL PIPE LENGTH REQUIREMENTS 6-5.1 Pipe Length 6-5.2 Cases Not Covered 6-5.3 Pipe Diameter Requirements <\/td>\n<\/tr>\n | ||||||
75<\/td>\n | Table 6-5.1-1 Straight Lengths for Orifice Meters <\/td>\n<\/tr>\n | ||||||
76<\/td>\n | Table 6-5.1-2 Straight Lengths for Nozzles <\/td>\n<\/tr>\n | ||||||
77<\/td>\n | Table 6-5.1-3 Straight Lengths for Classical Venturi <\/td>\n<\/tr>\n | ||||||
78<\/td>\n | Figure 6-5.3.1-1 Allowable Diameter Steps for 0.2% Additional Uncertainty <\/td>\n<\/tr>\n | ||||||
79<\/td>\n | 6-6 FLOW CONDITIONERS AND INSTALLATION 6-6.1 Flow Conditioner Design 6-6.2 Flow Conditioner Loss 6-7 INSTALLATION OF TEMPERATURE SENSORS <\/td>\n<\/tr>\n | ||||||
80<\/td>\n | Figure 6-6.1-1 Flow Conditioner Designs <\/td>\n<\/tr>\n | ||||||
81<\/td>\n | 6-8 REFERENCES Table 6-6.1.1-1 Hole Coordinates for Perforated Plate Table 6-6.2-1 Loss Coefficients for Flow Conditioners <\/td>\n<\/tr>\n | ||||||
82<\/td>\n | Section 7 Sonic Flow Nozzles and Venturis \u2014 Critical Flow, Choked Flow Conditions 7-1 NOMENCLATURE 7-2 INTRODUCTION 7-2.1 Advantages and Disadvantages of Sonic Flowmeters <\/td>\n<\/tr>\n | ||||||
83<\/td>\n | Table 7-1-1 Symbols Specifically Applied in Section 7 (in Addition to Symbols in Table 2-3-1) <\/td>\n<\/tr>\n | ||||||
84<\/td>\n | Figure 7-2-1 Ideal Mach Number Distribution Along Venturi Length at Typical Subcritical and Sonic Flow Conditions <\/td>\n<\/tr>\n | ||||||
85<\/td>\n | 7-2.2 Historical Development of Concepts <\/td>\n<\/tr>\n | ||||||
86<\/td>\n | 7-2.3 General Considerations Figure 7-2.2-1 Definition of Sonic Flow as the Maximum of the Flow [See Eq. (7-2-1)] <\/td>\n<\/tr>\n | ||||||
87<\/td>\n | 7-3 DEFINITIONS AND DESCRIPTION OF TERMS 7-3.1 Definitions 7-3.2 General <\/td>\n<\/tr>\n | ||||||
88<\/td>\n | Figure 7-3.2-1 Schematic Representation of Flow Defects at Venturi Throat <\/td>\n<\/tr>\n | ||||||
89<\/td>\n | 7-4 GUIDING PRINCIPLES 7-5 INSTRUMENTS AND METHODS OF MEASUREMENT 7-5.1 General Figure 7-3.2-2 Schematic Diagram of Sonic Surfaces at the Throat of an Axially Symmetric Sonic Flow Venturi Nozzle <\/td>\n<\/tr>\n | ||||||
90<\/td>\n | Figure 7-4-1 Requirements for Maintaining Sonic Flow in Venturi Nozzles Figure 7-4-2 Mass Flow Versus Back-Pressure Ratio for a Flow Nozzle Without a Diffuser and a Venturi Nozzle With a Diffuser <\/td>\n<\/tr>\n | ||||||
91<\/td>\n | 7-5.2 Design Criteria 7-5.3 Standardized Flow Nozzle and Venturi Designs <\/td>\n<\/tr>\n | ||||||
92<\/td>\n | Figure 7-5.3.1-1 Standardized Toroidal Throat Sonic Flow Venturi Nozzle <\/td>\n<\/tr>\n | ||||||
93<\/td>\n | 7-6 INSTALLATION 7-6.1 General Figure 7-5.3.3-1 Standardized Cylindrical Throat Sonic Flow Venturi <\/td>\n<\/tr>\n | ||||||
94<\/td>\n | 7-6.2 Standardized Inlet Flow Conditioner 7-6.3 Inlet Configurations for Sonic Venturi Nozzles 7-7 PRESSURE AND TEMPERATURE MEASUREMENTS 7-7.1 Pressure Measurements Figure 7-5.3.4-1 ASME Long-Radius Flow Nozzles <\/td>\n<\/tr>\n | ||||||
95<\/td>\n | Figure 7-6.2-1 Standardized Inlet Flow Conditioner and Locations for Pressure and Temperature Measurements Figure 7-6.3-1 Comparison of the \u201cContinuous Curvature\u201d Inlet With the \u201cSharp-Lip, Free-Standing\u201d Inlet <\/td>\n<\/tr>\n | ||||||
96<\/td>\n | Figure 7-7.1.1-1 Static and Total (Stagnation) Pressure Measurements on a Pipe <\/td>\n<\/tr>\n | ||||||
97<\/td>\n | Figure 7-7.1.2-1 Standardized Pressure Tap Geometry Installation <\/td>\n<\/tr>\n | ||||||
98<\/td>\n | 7-8 COMPUTATION OF RESULTS 7-8.1 Basic Theoretical Relationships 7-8.2 Classifications for Theoretical Mass Flow <\/td>\n<\/tr>\n | ||||||
99<\/td>\n | 7-8.3 Method for Determining the Deviation from Ideal Gas State 7-8.4 Ideal Gas Relationships <\/td>\n<\/tr>\n | ||||||
100<\/td>\n | Figure 7-8.3-1 Generalized Compressibility Chart <\/td>\n<\/tr>\n | ||||||
101<\/td>\n | 7-8.5 Real Gas Relationships 7-8.6 Real Gases, Using Complex Property Equations <\/td>\n<\/tr>\n | ||||||
102<\/td>\n | Figure 7-8.6.1-1 Calculation Processes for the Isentropic Path From Inlet to Sonic Throat for a Real Gas Using the Method of Johnson <\/td>\n<\/tr>\n | ||||||
103<\/td>\n | 7-9 FLOW UNCERTAINTY 7-9.1 Uncertainty in Sonic Flow Function Calculations 7-9.2 Calibration Methods and Uncertainty Estimates for Discharge Coefficients <\/td>\n<\/tr>\n | ||||||
104<\/td>\n | 7-10 DISCHARGE COEFFICIENTS 7-10.1 Method of Correlation of Discharge Coefficients 7-10.2 Discharge Coefficients for Toroidal Throat <\/td>\n<\/tr>\n | ||||||
105<\/td>\n | Table 7-10.2-1 Summary of Points Plotted in Figure 7-10.2-1 and Coefficients for Eq. (7-10-2) <\/td>\n<\/tr>\n | ||||||
106<\/td>\n | Figure 7-10.2-1 Composite Results for Toroidal-Throat Venturi Nozzles <\/td>\n<\/tr>\n | ||||||
107<\/td>\n | 7-10.3 Discharge Coefficients for Cylindrical Throat Venturi Nozzles 7-10.4 Discharge Coefficients for ASME Low-\u03b2 Throat Tap Flow Nozzles (Arnberg and Ishibashi, 2001b) Figure 7-10.2-2 Mean Line Discharge Coefficient Curves for Toroidal-Throat Venturi Nozzles <\/td>\n<\/tr>\n | ||||||
108<\/td>\n | 7-10.5 Boundary Layers and Discharge Coefficients 7-11 OTHER METHODS AND EXAMPLES 7-11.1 Traditional and Useful Methods for the Computation of Flow 7-11.1.1 Method 3: Real Gas Approximation Using the Ideal Gas Sonic Flow Function Corrected by the Compressibility Factor. Table 7-10.3-1 Discharge Coefficients for Cylindrical-Throat Venturi Nozzles <\/td>\n<\/tr>\n | ||||||
109<\/td>\n | Figure 7-11.1.1-1 Error in Method 3 for Air Based on Sonic Flow Functions When Using Air Property Data Table 7-11.1.1-1 Percent Error in Method 3 Based on Sonic Flow Functions and Air Property Data <\/td>\n<\/tr>\n | ||||||
110<\/td>\n | 7-11.1.2 Method 4: Real Gases and Vapors, Thermodynamic Property Tables. <\/td>\n<\/tr>\n | ||||||
111<\/td>\n | 7-11.1.3 Method 5: Ideal Gas, Ratio of Specific Heats Assumed Constant. Table 7-11.1.2.1-1 Sonic Flow Function, C*i, and Critical Property Ratios [Ideal Gases and Isentropic Relationships, Eqs. (7-2-7) Through (7-2-9)] Versus Type of Ideal Gas <\/td>\n<\/tr>\n | ||||||
112<\/td>\n | 7-11.1.4 Method 6: Ideal Gas, Ratio of Specific Heats at Inlet Stagnation State. Figure 7-11.1.4-1 Error in Sonic Flow Function, C*i, for Air Using Method 6 Based on Ideal Gas Theory With Ratio of Specific Heats Corresponding to the Inlet Stagnation State <\/td>\n<\/tr>\n | ||||||
113<\/td>\n | 7-11.1.5 Method 7: Ideal Gas, Gas Tables. <\/td>\n<\/tr>\n | ||||||
114<\/td>\n | 7-12 SPECIAL APPLICATIONS 7-12.1 Special Applications of Sonic Flow Nozzles and Venturis <\/td>\n<\/tr>\n | ||||||
115<\/td>\n | 7-13 REFERENCES <\/td>\n<\/tr>\n | ||||||
118<\/td>\n | Section 8 Flow Measurement by Velocity Traverse 8-1 NOMENCLATURE 8-2 INTRODUCTION 8-2.1 Flow Computation <\/td>\n<\/tr>\n | ||||||
119<\/td>\n | Table 8-1-1 Symbols Specifically Applied in Section 8 (in Addition to Symbols in Table 2-3-1) <\/td>\n<\/tr>\n | ||||||
120<\/td>\n | 8-3 TRAVERSE MEASUREMENT LOCATIONS <\/td>\n<\/tr>\n | ||||||
121<\/td>\n | 8-3.1 Pipes Figure 8-3.1-1 Pipe Velocity Measurement Loci <\/td>\n<\/tr>\n | ||||||
122<\/td>\n | Table 8-3.1-1 Locations and Weighting Factors for Gaussian Method in Pipes Table 8-3.1-2 Locations and Weighting Factors for Chebychev Method in Pipes <\/td>\n<\/tr>\n | ||||||
123<\/td>\n | Table 8-3.1-3 Locations and Weighting Factors for the Log-Linear Method in Pipes Table 8-3.1-4 Locations and Weighting Factors for the Equal-Area Method in Pipes <\/td>\n<\/tr>\n | ||||||
124<\/td>\n | 8-3.2 Rectangular Ducts Table 8-3.2-1 Locations and Weighting Factors for the Gaussian Method in Rectangular Ducts <\/td>\n<\/tr>\n | ||||||
125<\/td>\n | Table 8-3.2-2 Locations and Weighting Factors for Chebychev Method in Rectangular Ducts <\/td>\n<\/tr>\n | ||||||
126<\/td>\n | Figure 8-3.2-1 Duct Velocity Measurement Loci for Gaussian Distribution Table 8-3.2-3 Locations and Weighting Factors for the Equal-Area Velocity Method in Rectangular Ducts <\/td>\n<\/tr>\n | ||||||
127<\/td>\n | 8-4 RECOMMENDED OR REQUIRED LOCATIONS OF MEASUREMENT SECTIONS Figure 8-3.2-2 Recommended Number of Measurement Loci for the Equal-Area Method <\/td>\n<\/tr>\n | ||||||
128<\/td>\n | 8-5 USE AND CALIBRATION REQUIREMENTS FOR SENSORS 8-5.1 Pitot Tubes <\/td>\n<\/tr>\n | ||||||
129<\/td>\n | Figure 8-5.1-1 Pitot Tubes Not Requiring Calibration <\/td>\n<\/tr>\n | ||||||
130<\/td>\n | Figure 8-5.1-2 Pitot Tubes Needing Calibration But Acceptable <\/td>\n<\/tr>\n | ||||||
131<\/td>\n | Figure 8-5.1.2-1 Wedge-Type Five-Hole Probe Installation Schematic <\/td>\n<\/tr>\n | ||||||
132<\/td>\n | Figure 8-5.1.2-2 Five-Hole Probe Designs <\/td>\n<\/tr>\n | ||||||
133<\/td>\n | Figure 8-5.1.2-3 The Fechheimer Probe Installation <\/td>\n<\/tr>\n | ||||||
134<\/td>\n | 8-5.2 Calibration of Current and Propeller Meters 8-6 FLOW MEASUREMENT BY PITOT RAKE <\/td>\n<\/tr>\n | ||||||
135<\/td>\n | Figure 8-6-1 Insertion Type Pitot Rake <\/td>\n<\/tr>\n | ||||||
136<\/td>\n | Figure 8-6-2 Pitot Rake <\/td>\n<\/tr>\n | ||||||
137<\/td>\n | 8-7 GENERAL REQUIREMENTS 8-7.1 Pressure-Sensing Lines 8-7.2 Required Pressure Measurement Uncertainty 8-7.3 Velocity Traverse \u2014 Moveable Sensor 8-8 FLOW COMPUTATION CORRECTIONS Figure 8-6-3 Impact Pressure Tube Rake <\/td>\n<\/tr>\n | ||||||
138<\/td>\n | 8-8.1 Blockage Correction for Static Taps Upstream of Pitot Tubes 8-8.2 Blockage Correction for Current and Propeller Meters 8-9 UNCERTAINTY ANALYSIS <\/td>\n<\/tr>\n | ||||||
139<\/td>\n | 8-10 REFERENCES Table 8-9-1 Sample Uncertainty Estimate <\/td>\n<\/tr>\n | ||||||
140<\/td>\n | Section 9 Ultrasonic Flowmeters 9-1 SCOPE 9-2 PURPOSE 9-3 DEFINITIONS AND SYMBOLS 9-3.1 Terminology <\/td>\n<\/tr>\n | ||||||
141<\/td>\n | 9-3.2 Symbols 9-4 APPLICATIONS Table 9-3.2-1 Symbols Specifically Applied in Section 9 (in Addition to Symbols in Table 2-3-1) <\/td>\n<\/tr>\n | ||||||
142<\/td>\n | 9-4.1 Liquid Flow Measurement 9-4.2 Gas Flow Measurement 9-5 FLOWMETER DESCRIPTION 9-5.1 Primary Device (Sensor) <\/td>\n<\/tr>\n | ||||||
143<\/td>\n | 9-5.2 Secondary Device (Electronics) 9-5.3 Operating Principles Figure 9-5.1.3-1 Common Acoustic Path Configurations <\/td>\n<\/tr>\n | ||||||
144<\/td>\n | Figure 9-5.3.2-1 Wetted Recessed Transducer Configuration <\/td>\n<\/tr>\n | ||||||
146<\/td>\n | 9-5.4 Acoustic Signal 9-5.5 Measurement Circuitry 9-6 PERFORMANCE-AFFECTING CHARACTERISTICS 9-6.1 Meter Characteristics <\/td>\n<\/tr>\n | ||||||
147<\/td>\n | Figure 9-5.5-1 Acoustic Flow Measuring System Block Diagram <\/td>\n<\/tr>\n | ||||||
148<\/td>\n | Figure 9-6.1.1.3-1 Reflective Path Transducer Configuration <\/td>\n<\/tr>\n | ||||||
150<\/td>\n | Figure 9-6.1.2.5-1 Recessed Transducer Configuration Figure 9-6.1.2.6-1 Protruding Transducer Configuration <\/td>\n<\/tr>\n | ||||||
151<\/td>\n | Figure 9-6.1.2.7-1 Flush Transducer Configuration <\/td>\n<\/tr>\n | ||||||
152<\/td>\n | 9-6.2 Flow Characteristics Figure 9-6.1.2.9-1 Waveguide Transducer Configuration <\/td>\n<\/tr>\n | ||||||
153<\/td>\n | Figure 9-6.2.2-1 Cross-Beam Transducer Configuration <\/td>\n<\/tr>\n | ||||||
155<\/td>\n | 9-6.3 Installation Considerations <\/td>\n<\/tr>\n | ||||||
156<\/td>\n | 9-7 CALIBRATION 9-7.1 Purpose 9-7.2 Factory Calibration 9-7.3 Laboratory Calibration <\/td>\n<\/tr>\n | ||||||
157<\/td>\n | 9-7.4 Field Calibration 9-7.5 Dry Calibration 9-7.6 Calibration Considerations 9-7.7 Measurement Uncertainty <\/td>\n<\/tr>\n | ||||||
158<\/td>\n | 9-8 ERROR SOURCES AND THEIR REDUCTION 9-8.1 Axial Velocity Measurement Uncertainty <\/td>\n<\/tr>\n | ||||||
159<\/td>\n | 9-8.2 Signal Detection 9-8.3 Computation and Integration 9-8.4 Velocity Profile Uncertainties <\/td>\n<\/tr>\n | ||||||
160<\/td>\n | 9-8.5 Cross Section Dimensional Errors Figure 9-8.4-1 Laminar (Blue) and Turbulent (Red) Flow Velocity Profiles and 1-, 2-, 3-, and 5-Beam Acoustic Patch Diagrams <\/td>\n<\/tr>\n | ||||||
161<\/td>\n | 9-8.6 Acoustic Path Location 9-8.7 Upstream and Downstream Flow Disturbances 9-8.8 Proximity to Other Meters 9-8.9 Equipment Degradation <\/td>\n<\/tr>\n | ||||||
162<\/td>\n | Section 10 Tracer Method for Measuring Water Flow 10-1 NOMENCLATURE 10-2 INTRODUCTION 10-2.1 Applicability 10-3 CONSTANT RATE INJECTION METHOD <\/td>\n<\/tr>\n | ||||||
163<\/td>\n | 10-4 TRACER SELECTION 10-5 MIXING LENGTH AND MIXING DISTANCE 10-5.1 Experimental Derivation of Mixing Length Table 10-1-1 Symbols Specifically Applied in Section 10 (in Addition to Symbols in Table 2-3-1) <\/td>\n<\/tr>\n | ||||||
164<\/td>\n | Figure 10-5-1 Schematic Control Volume Figure 10-5.1-1 Experimental Results <\/td>\n<\/tr>\n | ||||||
165<\/td>\n | 10-5.2 Methods of Reducing the Mixing Distance 10-5.3 Experimental Checking 10-6 PROCEDURE 10-6.1 Preparation of the Injection Solution 10-6.2 Injection of the Concentrated Solution <\/td>\n<\/tr>\n | ||||||
166<\/td>\n | 10-6.3 Measurement of Injected Flow 10-6.4 Samples 10-7 FLUOROMETRIC METHOD OF ANALYSIS 10-7.1 Fluorometer Description 10-7.2 Factors Affecting Fluorescence Table 10-7.2-1 Temperature Exponents for Tracer Dyes <\/td>\n<\/tr>\n | ||||||
167<\/td>\n | 10-7.3 Fluorometer Calibration 10-8 FLOW TEST SETUP 10-8.1 Tracer Injection Setup <\/td>\n<\/tr>\n | ||||||
168<\/td>\n | Figure 10-7.3-1 Example Calibration Curves <\/td>\n<\/tr>\n | ||||||
169<\/td>\n | Figure 10-8.1-1 Tracer Injection Schematic <\/td>\n<\/tr>\n | ||||||
170<\/td>\n | 10-8.2 Sampling Methods 10-8.3 Flow-Through Tracer Flow Signal Figure 10-8.2-1 Sampling System Figure 10-8.3-1 Fluorometer Signal Versus Time <\/td>\n<\/tr>\n | ||||||
171<\/td>\n | 10-9 UNCERTAINTY 10-9.1 Systematic Errors 10-9.2 Example of Uncertainty Analysis \u2014 Fluorescent Tracer Table 10-9.2-1 Typical Uncertainties Using a Fluorescent Tracer <\/td>\n<\/tr>\n | ||||||
172<\/td>\n | 10-10 REFERENCE <\/td>\n<\/tr>\n | ||||||
173<\/td>\n | Section 11 Vortex Shedding Meters 11-1 NOMENCLATURE 11-2 PRINCIPLE OF MEASUREMENT Table 11-1-1 Symbols Specifically Applied in Section 11 (in Addition to Symbols in Table 2-3-1) <\/td>\n<\/tr>\n | ||||||
174<\/td>\n | 11-3 FLOWMETER DESCRIPTIONS 11-3.1 Physical Components 11-3.2 Flow Tube 11-3.3 Transmitter Figure 11-2-1 Vortex Formation <\/td>\n<\/tr>\n | ||||||
175<\/td>\n | 11-3.4 Equipment Markings 11-4 APPLICATION CONSIDERATIONS 11-4.1 Sizing 11-4.2 Process Influences <\/td>\n<\/tr>\n | ||||||
176<\/td>\n | 11-4.3 Safety <\/td>\n<\/tr>\n | ||||||
177<\/td>\n | 11-5 INSTALLATION 11-5.1 Adjacent Piping 11-5.2 Flowmeter Orientation 11-5.3 Flowmeter Location <\/td>\n<\/tr>\n | ||||||
178<\/td>\n | 11-5.4 New Installations 11-5.5 Complementary Measurements 11-6 OPERATION 11-7 CALIBRATION AND UNCERTAINTY 11-7.1 Calibration Methods Figure 11-5.5-1 Locations of Pressure and Temperature Measurements <\/td>\n<\/tr>\n | ||||||
179<\/td>\n | 11-7.2 Mean K-Factor Calculation and Uncertainty 11-7.3 Installation Influence on Uncertainty Figure 11-7.1-1 Illustration of a K-Factor Curve <\/td>\n<\/tr>\n | ||||||
180<\/td>\n | 11-7.4 Measurement Uncertainty Examples Table 11-7.3-1 Recommended Distance From Disturbance for Less Than 0.5% Increase in Uncertainty Table 11-7.4-1 Vortex Measurement Uncertainty Example <\/td>\n<\/tr>\n | ||||||
181<\/td>\n | 11-8 REFERENCES Table 11-7.4-2 Vortex Measurement Uncertainty Example With Installation Uncertainty Table 11-7.4-3 Vortex Measurement Uncertainty Example With Vortex Meter, Pressure Sensor, and Temperature Sensor Uncertainties <\/td>\n<\/tr>\n | ||||||
182<\/td>\n | Section 12 Mechanical Meters 12-1 NOMENCLATURE 12-2 INTRODUCTION Table 12-1-1 Symbols Specifically Applied in Section 12 (in Addition to Symbols in Table 2-3-1) <\/td>\n<\/tr>\n | ||||||
183<\/td>\n | 12-3 TURBINE METERS 12-3.1 Meter Design Data and Construction Details 12-4 TURBINE METER SIGNAL TRANSDUCERS AND INDICATORS 12-5 CALIBRATION <\/td>\n<\/tr>\n | ||||||
184<\/td>\n | 12-5.1 Meter Factor <\/td>\n<\/tr>\n | ||||||
185<\/td>\n | 12-5.2 Temperature Range 12-5.3 Pressure Loss 12-5.4 Installation Conditions 12-5.5 Mechanically Driven External Equipment 12-5.6 Temperature and Pressure Effects 12-6 RECOMMENDATIONS FOR USE 12-6.1 Start-up Recommendation <\/td>\n<\/tr>\n | ||||||
186<\/td>\n | 12-6.2 Over-Range Protection 12-6.3 Bypass 12-6.4 Maintenance and Inspection Frequency 12-6.5 Other Installation Considerations 12-6.6 Accessories Installation <\/td>\n<\/tr>\n | ||||||
187<\/td>\n | 12-7 PIPING INSTALLATION AND DISTURBANCES 12-7.1 Swirl Effect 12-7.2 Velocity Profile Effect 12-8 EXAMPLE OF FLOW MEASUREMENT BY TURBINE METER WITH NATURAL GAS 12-8.1 Meter Flow <\/td>\n<\/tr>\n | ||||||
188<\/td>\n | 12-8.2 Normalizing Meter Flows 12-8.3 Systematic Uncertainty Calculation of Flow in Units of Normalized Flow 12-8.4 Specific Range of Flow 12-9 RANDOM UNCERTAINTY DUE TO TIME VARIANCE OF DATA <\/td>\n<\/tr>\n | ||||||
189<\/td>\n | 12-10 FIELD CHECKS 12-11 POSITIVE DISPLACEMENT METERS <\/td>\n<\/tr>\n | ||||||
190<\/td>\n | Figure 12-11-1 Positive Displacement Volumeters <\/td>\n<\/tr>\n | ||||||
191<\/td>\n | 12-11.1 Positive Displacement Meter Performance 12-11.2 Calibration Requirements 12-11.3 Interpolation of Calibration Data <\/td>\n<\/tr>\n | ||||||
192<\/td>\n | 12-12 REFERENCES Figure 12-11.3-1 Method of Interpolation of Positive Displacement Meter Performance From Calibration Data to Other Fluid Viscosity and Operating Conditions <\/td>\n<\/tr>\n | ||||||
194<\/td>\n | Section 13 Coriolis Mass Flowmeters 13-1 DEFINITIONS AND NOMENCLATURE 13-1.1 Definitions 13-1.2 Nomenclature 13-2 INTRODUCTION 13-2.1 Sensor Physical Properties <\/td>\n<\/tr>\n | ||||||
195<\/td>\n | Table 13-1.2-1 Symbols Specifically Applied in Section 13 (in Addition to Symbols in Table 2-3-1) <\/td>\n<\/tr>\n | ||||||
196<\/td>\n | 13-3 METER CONSTRUCTION 13-3.1 Primary Device Figure 13-3.1-1 Typical Mechanical Arrangement <\/td>\n<\/tr>\n | ||||||
197<\/td>\n | 13-3.2 Secondary Device Figure 13-3.1-2 Oscillating Flow Tubes <\/td>\n<\/tr>\n | ||||||
198<\/td>\n | 13-4 CALIBRATION AND UNCERTAINTY 13-4.1 Calibration 13-4.2 Lab Calibration and Testing Considerations Figure 13-3.2-1 Electronic Transmitter <\/td>\n<\/tr>\n | ||||||
200<\/td>\n | Table 13-4.2.1.3.2-1 Measurement Recommendations for Different Gas Test Pressures Table 13-4.2.2.4-1 Best Practices for Liquid and Gas Testing Data Collection Time <\/td>\n<\/tr>\n | ||||||
202<\/td>\n | 13-4.3 Fluid Properties Affecting Meter Performance Figure 13-4.2.3-1 Typical Calibration Curve With Uncertainty Bands (2\u03c3 Limits Shown) <\/td>\n<\/tr>\n | ||||||
203<\/td>\n | Figure 13-4.3.2.1-1 Temperature Effect on Zero (2\u03c3 Limits Shown) <\/td>\n<\/tr>\n | ||||||
204<\/td>\n | Figure 13-4.3.2.2-1 Pressure Effect on Span (2\u03c3 Limits Shown) <\/td>\n<\/tr>\n | ||||||
205<\/td>\n | 13-5 APPLICATION CONSIDERATIONS 13-5.1 Materials of Construction 13-5.2 Installation <\/td>\n<\/tr>\n | ||||||
206<\/td>\n | Figure 13-5.1.2-1 Pressure Drop Versus Mass Flow <\/td>\n<\/tr>\n | ||||||
207<\/td>\n | 13-6 FIELD UNCERTAINTY EXAMPLES 13-6.1 Example 1 13-6.2 Example 2 <\/td>\n<\/tr>\n | ||||||
208<\/td>\n | Table 13-6.1-1 Example 1 \u2014 Analysis of Unheated Natural Gas Applications at Maximum Flow Rate <\/td>\n<\/tr>\n | ||||||
209<\/td>\n | Table 13-6.1-2 Example 1 \u2014 Analysis of Unheated Natural Gas Application at Minimum Flow Rate <\/td>\n<\/tr>\n | ||||||
210<\/td>\n | Table 13-6.2-1 Example 2 \u2014 Analysis of Heated Natural Gas Applications at Maximum Flow Rate <\/td>\n<\/tr>\n | ||||||
211<\/td>\n | 13-6.3 Example 3 Table 13-6.2-2 Example 2 \u2014 Analysis of Heated Natural Gas Applications at Minimum Flow Rate <\/td>\n<\/tr>\n | ||||||
212<\/td>\n | 13-6.4 Example 4 Table 13-6.3-1 Example 3 \u2014 Analysis of Liquid Condensate Application With Flowmeter Zeroed <\/td>\n<\/tr>\n | ||||||
213<\/td>\n | Table 13-6.4-1 Example 4 \u2014 Analysis of Liquid Condensate Application With Flowmeter Not Zeroed <\/td>\n<\/tr>\n | ||||||
214<\/td>\n | Table I-1-1 Symbols Used in Mandatory Appendix I (in Addition to Symbols in Table 2-3-1) MANDATORY APPENDIX I LABORATORY CALIBRATION EVALUATION AND EXTRAPOLATION I-1 NOMENCLATURE I-2 GENERAL REQUIREMENTS <\/td>\n<\/tr>\n | ||||||
215<\/td>\n | I-3 CALIBRATION CONDITIONS I-4 DATA EVALUATION <\/td>\n<\/tr>\n | ||||||
218<\/td>\n | Table I-6-1 Calibration Data, Test Data, and Predicted Value for an ASME Throat Tap Nozzle I-5 EXTRAPOLATION TO HIGHER REYNOLDS NUMBERS OR FLOW I-6 EXAMPLE CALCULATION <\/td>\n<\/tr>\n | ||||||
219<\/td>\n | Figure I-6.3-1 Regression of Calibration Data With 95% Confidence Limits <\/td>\n<\/tr>\n | ||||||
221<\/td>\n | NONMANDATORY APPENDICES NONMANDATORY APPENDIX A PULSATING FLOW MEASUREMENT A-1 NOMENCLATURE A-2 INTRODUCTION A-3 ORIFICES, NOZZLES, AND VENTURIS <\/td>\n<\/tr>\n | ||||||
222<\/td>\n | Figure A-3.1-1 Measured Errors Versus Oscillating Differential Pressure Amplitude Relative to the Steady State Mean <\/td>\n<\/tr>\n | ||||||
223<\/td>\n | Table A-3.1-1 Error Threshold Versus Relative Amplitude of \u0394P <\/td>\n<\/tr>\n | ||||||
224<\/td>\n | Figure A-3.2-1 Fluid-Metering System Block Diagram <\/td>\n<\/tr>\n | ||||||
227<\/td>\n | Figure A-3.6-1 Experimental and Theoretical Pulsation Error A-4 TURBINE METERS IN PULSATING FLOW <\/td>\n<\/tr>\n | ||||||
228<\/td>\n | Figure A-4.1-1 Semi-Log Plot of Theoretical Meter Pulsation Error Versus Rotor Response Parameter for Sine Wave Flow Fluctuation, D2 = 0.1, and Pulsation Index, I = 0.1 and 0.2 <\/td>\n<\/tr>\n | ||||||
231<\/td>\n | A-5 REFERENCES <\/td>\n<\/tr>\n | ||||||
234<\/td>\n | Figure B-1-1 Graph of Critical Flow Functions for Air NONMANDATORY APPENDIX B CRITICAL FLOW FUNCTIONS FOR AIR BY R. C. JOHNSON B-1 GENERAL B-2 REFERENCES <\/td>\n<\/tr>\n | ||||||
235<\/td>\n | Figure C-1-1 Graph of Deviation of Critical Flow Functions for Air (Shown in Figure B-1-1) NONMANDATORY APPENDIX C DEVIATION OF JOHNSON C* VALUES C-1 GENERAL C-2 REFERENCES <\/td>\n<\/tr>\n | ||||||
236<\/td>\n | NONMANDATORY APPENDIX D REAL GAS CORRECTION FACTORS D-1-1 GENERAL D-2 REFERENCES <\/td>\n<\/tr>\n | ||||||
237<\/td>\n | Figure D-1-1 Graph of Correction Factors for Air to Real Gas From Ideal Gas, up to 30 atm <\/td>\n<\/tr>\n | ||||||
238<\/td>\n | Figure D-1-2 Graph of Correction Factors for Air to Real Gas From Ideal Gas, up to 100 atm <\/td>\n<\/tr>\n | ||||||
239<\/td>\n | Figure D-1-3 Graph of Correction Factors for Air to Real Gas From Ideal Gas, up to 300 atm <\/td>\n<\/tr>\n | ||||||
240<\/td>\n | NONMANDATORY APPENDIX E CONVERSION FACTORS E-1 GENERAL <\/td>\n<\/tr>\n | ||||||
241<\/td>\n | Table\u00a0E-1-1 Conversions to SI (Metric) Units <\/td>\n<\/tr>\n | ||||||
243<\/td>\n | Table E-1-2 Conversion Factors for Pressure (Force\/Area) <\/td>\n<\/tr>\n | ||||||
244<\/td>\n | Table E-1-3 Conversion Factors for Specific Volume (Volume\/Mass) <\/td>\n<\/tr>\n | ||||||
245<\/td>\n | Table E-1-4 Conversion Factors for Specific Enthalpy and Specific Energy (Energy\/Mass) <\/td>\n<\/tr>\n | ||||||
247<\/td>\n | Table E-1-5 Conversion Factors for Specific Entropy, Specific Heat, and Gas Constant [Energy\/(Mass \u00d7 Temperature)] <\/td>\n<\/tr>\n | ||||||
248<\/td>\n | Table E-1-6 Conversion Factors for Viscosity (Force \u00d7 Time\/Area ~ Mass\/Length \u00d7 Time) <\/td>\n<\/tr>\n | ||||||
249<\/td>\n | Table E-1-7 Conversion Factors for Kinematic Viscosity (Area\/Time) <\/td>\n<\/tr>\n | ||||||
250<\/td>\n | NONMANDATORY APPENDIX F THERMAL EXPANSION TABLES F-1 GENERAL <\/td>\n<\/tr>\n | ||||||
256<\/td>\n | Table F-1-2 Thermal Expansion Data (U.S. Customary) <\/td>\n<\/tr>\n | ||||||
259<\/td>\n | NONMANDATORY APPENDIX G HISTORICAL DEFINITIONS OF UNITS OF MEASUREMENT G-1 DEFINITIONS <\/td>\n<\/tr>\n | ||||||
260<\/td>\n | G-2 REFERENCES <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" ASME PTC-19.5-2022 Flow Measurement<\/b><\/p>\n |