{"id":395709,"date":"2024-10-20T04:20:57","date_gmt":"2024-10-20T04:20:57","guid":{"rendered":"https:\/\/pdfstandards.shop\/product\/uncategorized\/asme-vvuq-10-2-2021\/"},"modified":"2024-10-26T08:07:13","modified_gmt":"2024-10-26T08:07:13","slug":"asme-vvuq-10-2-2021","status":"publish","type":"product","link":"https:\/\/pdfstandards.shop\/product\/publishers\/asme\/asme-vvuq-10-2-2021\/","title":{"rendered":"ASME VVUQ 10 2 2021"},"content":{"rendered":"
The purpose of this Standard is to expand upon the important role of uncertainty quantification (UQ) in verification, validation, and uncertainty quantification (VVUQ).<\/p>\n
PDF Pages<\/th>\n | PDF Title<\/th>\n<\/tr>\n | ||||||
---|---|---|---|---|---|---|---|
4<\/td>\n | CONTENTS <\/td>\n<\/tr>\n | ||||||
5<\/td>\n | Foreword <\/td>\n<\/tr>\n | ||||||
6<\/td>\n | ASME VVUQ COMMITTEE ROSTER <\/td>\n<\/tr>\n | ||||||
7<\/td>\n | CORRESPONDENCE WITH THE VVUQ COMMITTEE <\/td>\n<\/tr>\n | ||||||
9<\/td>\n | INTRODUCTION <\/td>\n<\/tr>\n | ||||||
10<\/td>\n | 1 PURPOSE AND SCOPE 1.1 Purpose and Motivation 1.2 Objectives and Scope 2 BACKGROUND AND DEFINITIONS 2.1 Mathematical Models <\/td>\n<\/tr>\n | ||||||
11<\/td>\n | Figures Figure 1.1-1 Verification, Validation, and Uncertainty Quantification Process <\/td>\n<\/tr>\n | ||||||
12<\/td>\n | 2.2 Variables and Parameters Figure 2.2-1 Illustration of a Tapered Cantilever Beam <\/td>\n<\/tr>\n | ||||||
13<\/td>\n | 2.3 Errors and Uncertainties <\/td>\n<\/tr>\n | ||||||
14<\/td>\n | 2.4 Aleatory and Epistemic Uncertainties Table Table 2.3-1 Examples of Sources of Error and Uncertainty <\/td>\n<\/tr>\n | ||||||
15<\/td>\n | 2.5 Deterministic and Nondeterministic Quantities 2.6 Probabilistic and Nonprobabilistic Methods <\/td>\n<\/tr>\n | ||||||
16<\/td>\n | 2.7 Sensitivity Analysis Figure 2.6-1 Illustration of Aleatory and Epistemic Uncertainty <\/td>\n<\/tr>\n | ||||||
17<\/td>\n | 2.8 Residual Errors and Residual Uncertainty <\/td>\n<\/tr>\n | ||||||
18<\/td>\n | 3 UNCERTAINTY QUANTIFICATION IN MODELING AND SIMULATION Figure 2.8-1 Variation of Standard Residual Error With Number of Input Variables Included in Empirical Model Formulation <\/td>\n<\/tr>\n | ||||||
19<\/td>\n | 3.1 Sources of Uncertainty in Modeling 3.1.1 Uncertainties in Model Form. <\/td>\n<\/tr>\n | ||||||
20<\/td>\n | 3.1.2 Uncertainties in Model Inputs. 3.1.3 Uncertainties in Numerical Solutions. <\/td>\n<\/tr>\n | ||||||
21<\/td>\n | Figure 3.1.2-1 Defining a Random Variable Using Data <\/td>\n<\/tr>\n | ||||||
22<\/td>\n | 3.1.4 Uncertainties in Model-Basis Data. 3.2 Uncertainty Propagation Figure 3.2-1 Illustration of the Uncertainty Propagation Process <\/td>\n<\/tr>\n | ||||||
23<\/td>\n | 4 UNCERTAINTY QUANTIFICATION IN VALIDATION EXPERIMENTS 4.1 Characteristics of Validation Experiments <\/td>\n<\/tr>\n | ||||||
24<\/td>\n | 4.2 Uncertainty Quantification in Validation Experiments <\/td>\n<\/tr>\n | ||||||
25<\/td>\n | 5 UNCERTAINTY QUANTIFICATION IN MODEL VALIDATION ASSESSMENT 5.1 Validation Requirements 5.2 Validation Metrics and Assessment <\/td>\n<\/tr>\n | ||||||
26<\/td>\n | Figure 5.2.1-1 Extension of the Mean Metric: The Difference Between Ymod and Yexp <\/td>\n<\/tr>\n | ||||||
27<\/td>\n | Figure 5.2.2-1 Illustration of the Area Metric <\/td>\n<\/tr>\n | ||||||
28<\/td>\n | Figure 5.2.3-1 PDF and CDF of the Error Metric <\/td>\n<\/tr>\n | ||||||
29<\/td>\n | 6 UNCERTAINTY QUANTIFICATION IN REVISIONS TO MODEL AND EXPERIMENT <\/td>\n<\/tr>\n | ||||||
30<\/td>\n | 7 UNCERTAINTIES IN HIERARCHICAL MODELS <\/td>\n<\/tr>\n | ||||||
31<\/td>\n | 8 REFERENCES Figure 7-1 Illustration of a Model Hierarchy <\/td>\n<\/tr>\n<\/table>\n","protected":false},"excerpt":{"rendered":" ASME VVUQ 10.2-2021 – The Role of Uncertainty Quantification in Verification and Validation of Computational Solid Mechanics Models<\/b><\/p>\n |